
University of Hong Kong

Department of Computer Science

COMP8502 - Advanced Topics in Pattern Recognition

Final Project Report

TITLE:

Handwritten Digits Recognition

 using Convolutional Neural Network

GROUP MEMBER:

 NAME: Ao Eerdemotai HKUID: 2012951823

 NAME: He Rui HKUID: 2012951976

1. Introduction

In our final project, we implement the convolutional neural network for

handwritten digits recognition. The MNIST database is used both in

training and testing, and in order to accelerate the process, we apply GPU

programming skills into the previous CPU algorithm with the help of

C++ AMP. Experiment with a subset of the training dataset has been

made, which works out an advisable recognition ratio 73% in 200 training

epochs. Further improvement is needed in variable learning rate, pooling

technique and more efficient GPU utilization, etc.

2. Terminology

2.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are variants of Neural Networks,

which exploit spatially local correlation by enforcing a local connectivity

pattern between neurons of adjacent layers. In CNNs, each sparse filter is

additionally replicated across the entire visual field. These “replicated”

units form a feature map, which share the same weight vector and the

same bias. Conceptually, a feature map is obtained by convolving the

input image with a linear filter, adding a bias term and then applying a

non-linear function.

2.2 C++ AMP

C++ Accelerated Massive Parallelism (C++ AMP) accelerates execution

of C++ code by taking advantage of data-parallel hardware such as a

graphics processing unit (GPU) on a discrete graphics card. The C++

AMP programming model includes multidimensional arrays, indexing,

memory transfer, tiling, and a mathematical function library.

2.3 MNIST

The MNIST database of handwritten digits, established by Yann LeCun

and Corinna Cortes, has a training set of 60,000 examples, and a test set

of 10,000 examples. The digits have been size-normalized and centered in

a fixed-size 28 × 28 image of gray values.

3. Methodology

3.1 Structure of the Convolutional Neural Network

Input Data:

The input is the grayscale image of the handwritten character from the

MNIST database. The original 28 × 28 image is padded to 29 × 29

pixels due to the consideration of the structure of Layer #0.

Layer #0:

Layer #0 is a convolutional layer with 6 feature maps. Each feature map

is sized to 13 × 13 pixels/neurons. Each neuron in each feature map is a

5 × 5 convolutional kernel of the input layer, but every other pixel of the

input image is skipped. As a consequence, there are 13 positions where

the 5 × 5 kernel will fit in each row of the input image, and 13 positions

where the 5x5 kernel will fit in each column of the input image. There are

therefore 13 × 13 × 6 = 1014 neurons, and (5 × 5 + 1) × 6 = 156

weights ("+1" is for the bias) in Layer #0.

Layer #1:

Layer #1 is also a convolutional layer, but with 50 feature maps. Each

feature map is 5 × 5, and each unit in the feature maps is a 5 × 5

convolutional kernel of corresponding areas of all of the 6 feature maps

of the previous layer, each of which is a 13 × 13 feature map. There are

therefore 5 × 5 × 50 = 1250 neurons, and (5 × 5 × 6 + 1) × 50 =

7550 weights in Layer #1.

Layer #2:

Layer #2 is a fully-connected layer with 100 units. Since it is fully

connected, each of the 100 neurons in the layer is connected to all 1250

neurons in the previous layer. There are therefore 100 neurons,

100 × (1250 + 1) = 125100 weights, and 100 × (1250 + 1) =

125100 connections in Layer #2.

Layer #3:

Layer #3 is the final, output layer. This layer is a fully-connected layer

with 10 units. Since it is fully-connected, each of the 10 neurons in the

layer is connected to all 100 neurons in the previous layer. There are

therefore 10 neurons, 10 × (100 + 1) = 1010 weights, and 10 ×

(100 + 1) = 1010 connections in Layer #3.

3.2 Forward Propagation

Forward propagation is the process whereby each neuron calculates its

output value, based on inputs provided by the output values of the

neurons that feed it, according to the feed-forward formula, namely:

𝑥𝑛𝑖 = 𝐹�𝑦𝑛𝑖 � = 𝐹(�𝜔𝑛𝑖𝑖
𝐶𝑛−1

𝑘=0

∙ 𝑥𝑛−1𝑘)

In the above formula, 𝐹(.) refers to the Activation Function, which

squash the input value into range of [-1, 1]. 𝐹�𝑦𝑛𝑖 � = tanh (𝑦𝑛𝑖) is chosen

due to the convenience of obtaining its derivative, 𝐺�𝑦𝑛𝑖 � = 1 − 𝑥2.

This formula is applied by iterating through all connections for the

neuron, and for each connection, obtaining the corresponding weight and

the corresponding output value from a neuron in the previous layer.

After 4 forward iterations, reaching the output Layer #3, exactly one

neuron has a value of +1 corresponding to the answer (hopefully), while

all other nine neurons have an output of -1.

3.3 Back Propagation

Back propagation is an iterative process that starts with the last layer and

moves backwards through the layers until the first layer is reached. Start

the process off by computing the partial derivative of the error due to a

single input image pattern with respect to the outputs of the neurons on

the last layer.

The error due to a single pattern is calculated as follows:

𝐸𝑛𝑃 = 1
2
∙ ∑(𝑥𝑛𝑖 − 𝑇𝑛𝑖)2 (Equation 1)

Given the above error equation, we can derive that:
𝜕𝐸𝑛𝑃

𝜕𝑥𝑛𝑖
= 𝑥𝑛𝑖 − 𝑇𝑛𝑖 (Equation 2)

⇒ 𝜕𝐸𝑛𝑃

𝜕𝑦𝑛𝑖
= 𝐺(𝑥𝑛𝑖) ∙ 𝜕𝐸𝑛

𝑃

𝜕𝑥𝑛𝑖
 (Equation 3)

⇒ 𝜕𝐸𝑛𝑃

𝜕𝜔𝑛
𝑖𝑖 = 𝑥𝑛−1

𝑗 ∙ 𝜕𝐸𝑛
𝑃

𝜕𝑦𝑛𝑖
 (Equation 4)

⇒ 𝜕𝐸𝑛𝑃

𝜕𝑥𝑛−1𝑘 = ∑ 𝜔𝑛𝑖𝑖
𝐶𝑛−1
𝑘=0 ∙ 𝜕𝐸𝑛

𝑃

𝜕𝑦𝑛𝑖
 (Equation 5)

The numeric values obtained from Equation 5 are used as starting values

for the calculations on the immediately preceding layer, and we compute

Equation 3, 4 and 5 in a repetition for the back propagation.

Meanwhile, the values from Equation 4 tell us how much to change the

weights in the current layer n. In particular, we update the value of each

weight according to the formula:

(𝜔𝑛
𝑖𝑖)𝑛𝑛𝑛 = (𝜔𝑛

𝑖𝑖)𝑜𝑜𝑜 − 𝑒𝑡𝑡 ∙ (
𝜕𝐸𝑛𝑃

𝜕𝜔𝑛
𝑖𝑖)

Eta is the learning rate, which is set as a constant 0.001 in our program.

3.4 C++ AMP acceleration

Use the accelerator and accelerator_view classes to specify the device

or emulator to run C++ AMP code on.
accelerator defaultDevice(accelerator::default_accelerator);
accelerator_view defaultView = defaultDevice.default_view;

Use array_view class to create C++ AMP objects. Data passed to the

array_view constructor is copied to the accelerator when the kernel

function is executed.
array_view<float,2> inputlayer_output_GPU(...);
array_view<float,1> layer0_weights_GPU(...);
array_view<float,3> layer0_output_GPU(...);
array_view<float,1> dE_dx_layer0_GPU(...);
array_view<int,1> layer0_kernel_GPU(...);

The C++ AMP code that we want to run on the accelerator is specified as

an argument in a call to the parallel_for_each method. Either a lambda

expression or a function object could be that argument. Additionally, the

lambda expression or function object can call a C++ AMP-restricted

function.
parallel_for_each(
 layer0_output_GPU.extent,
 [=](index<3> idx) restrict(amp)
{
 //...

//... complete task

layer0_output_GPU(map_index,row,column)=current_output;
}
layer0_output_GPU.synchronize();

4. Experimental Results

From 60000 training samples of the MNIST database, we choose 100

samples to complete the experiment, observing the change of the

recognition ratio and mean squared error with the increasing of the

training epochs. The result is as follows:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140 160 180 200

Training Epochs

Recognition Accuracy Rate

In 200 training epochs, we achieve the advisable recognition accuracy

rate 73.00% and the mean squared error drops down to 1.25.

5. Discussion

In our program, the learning rate remains constantly as 0.001, which

should be gradually decreased during the training to achieve a better

performance. For convenient implementation, we connect adjacent layers

directly by keeping a constant convolutional window index matrix. To

attain more accurate results, we need use max-pooling technique, a form

of non-linear down-sampling, to reduce the computational complexity for

upper layers and provide a form of translation invariance. Though we use

GPU to accelerate the training process, the running speed does not

increase significantly. There should be large space to improve the C++

AMP code and second order algorithm need to be considered as well.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140 160 180 200

Training Epochs

Mean Squared Error

